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Logistics for the Webinar 

• All  lines  will  be  muted
• Use  the  chat  box  on  your  screen  to  ask  a 

question or  leave a comment
• Note:  chat  box  will  not  be  seen  in  “full  screen” 

mode
• Slides and a transcript will be posted online

within a few weeks of the webinar
• Please complete the post-webinar survey with

your feedback at the conclusion of the webinar!
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Welcome! 
• Jessie Parker,  GTL  and Analyst  on Medicaid IAP 

Data  Analytic  Team,  Data  and  Systems  Group, 
CMCS 
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Agenda for Today’s Webinar 
• Introduction 

• Overview of the Medicaid Innovation 
Accelerator Program 

• The Issue of Missing Data 

• Types and Patterns of Missing Data 

• Alabama Medicaid’s Experience with Missing
Data 
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Today’s Speakers 
• Thomas Flottemesch, Senior Research Leader,

IBM Watson Health 
• Chris McInnish, Director of Quality Analytics, and

Drew Nelson, MPH, Director of Quality
Assurance Division, Alabama Medicaid Agency 
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Medicaid  Innovation  Accelerator  Program 
(IAP) 
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Goals for Today’s Webinar 
In this interactive webinar, states will learn about: 
• Challenges presented by missing data 
• Types or patterns of missing data 

• Alabama Medicaid’s approach to addressing
missing data in their analysis of maternity care
delivery 
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An Overview of Missing Data 

Challenges, Patterns and Strategies 

Thomas Flottemesch, Senior
Research Leader, IBM Watson
Health 
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The Issue of Missing Data 
• Missing  data  refers  to: 

• Variables  within  an  observation  that  have  no  data  
when  they  should  (incomplete  observations). 

• Missing data does not refer to: 
• Observations with no data (missing observations) 
• Unobserved and/or unobservable variables 

• With missing data we need to know: 
• Are the missing data informative about the data we 

observe? 
• Could ignoring the missing data lead to incorrect 

conclusions? 
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Process of Statistical Analysis 

• Statistical Analysis: 
1. Understand a data generating 

process 
2. Make probabilistic

inference(s) 
• What happened? 
• How did it happen? 
• Did it happen differently? 
• Will it happen again?  

• Missing Data: 
– Pattern: Which values are 

missing? 
– Mechanism: How is the  

pattern related to the 
observed data? 
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Structure of Missing Data 
• Univariate Missing Data: 

• A single variable is missing data 
• Most critical when that variable is our outcome or factor 

of interest 

• Multivariate Missing Data: 
• Multiple variables are missing data within and 

across observations 
• How data  are  missing  informs  our  strategy: 

• Monotone  or  “Nearly”  Monotone  versus Arbitrary  Missing  

• Different  variables  may  have  different  patterns  of 
missingness 
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Dataset with a Monotone Structure 

• The missingness can be addressed sequentially 
• “Conserve” information  and  use  most  effectively 

• In the above table: 
1. Use Group D to inform Group C => C* 
2. Use Groups D and C* to inform Group B => B* 
3. Use Groups D, C*, and B* to inform Group A => A* 

• How to do it: 
• SAS: PROC MI: PROC FREQ statement and Monotone Statement 
• R: MICE Library: md.pattern() AND mice() has visitSequence=“monotone” or 

“revmonotone” options 
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Rubin’s (1976) typology of mechanisms 
Pattern National Academy (US) Takeaways 

Missing  
Completely At 
Random  
(MCAR) 

The missing data are unrelated to 
the study variables. 

• Available data is an unbiased  
random  sample. 

• Usually an unrealistically  
strong assumption. 

Missing At 
Random 
(MAR) 

Whether or not data are missing  
does not depend on  the  values of 
the  missing data. 

• Need to address; do not need  
to  understand mechanism. 

• Data we observe can predict  
the data  we cannot. 

Missing Not 
At Random 
(MNAR) 

Whether or not data are missing  
depends  on  the  values of the 
missing data. 

• The mechanism cannot be  
ignored 

• The mechanism  must be  
modeled. 

Adapted from : https://onbiostatistics.blogspot.com/2012/10/missingness-mechanism-mcar-mar-and-mnar.html  

https://onbiostatistics.blogspot.com/2012/10/missingness-mechanism-mcar-mar-and-mnar.html
https://onbiostatistics.blogspot.com/2012/10/missingness-mechanism-mcar-mar-and-mnar.html
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Consider the following… 
Task: Predict annual healthcare 
utilization (costs) adjusting for items on 
an outpatient clinic form. 
• Key Intake Items: 

• Family History: Cancers, Diabetes, 
other risk factors 

• PHQ-9: Indicates depression risk 
• Smoking Status: Health risk and target 

for potential behavior intervention 
• Data were missing for several of 

these items across enrollees 
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Collected Data (Example) 
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Pertaining to our analysis… 
• Family History, PHQ-9, and smoking 

status have missing values. 
•If patients do not know Family History, 

•Missing  Completely  At  Random 
•If men are less likely to complete a PHQ-9 

•Missing  At  Random 
• If Smokers tend not to share smoking status 

•Missing  Not  at  Random 
• Missingness mechanism(s) are ignorable 
• Model  the  missingness mechanism(s)  

• Selection  and/or  Pattern  Mixture  models  
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Illustration: Missing Completely at
Random (MCAR) & Maternal Episode 
• Task: Develop risk-adjusted estimates of
maternity episodes using only one year (Jan-Dec) 
of claims data 
– Risk Adjusters: Maternal health, gestational age,
prenatal care initiation 

– Missing Data Issue: “Complete” episodes are available 
only for start of year 

• Why are the data MCAR? 
– When pregnancy occurs is probably independent
from the healthcare used. 

– Rubin: Missing data are not related to the study
variables. 



     
 

Illustration: MCAR and Maternal Episode 
Strategy 1 (Complete Case Analysis): Use only the 
complete episode. 

Jan-Mar Apr-Jul Aug-Dec 
• Full Data 

Capture 
• Complete Cases 

• Full or Partial 
• Complete  Cases 

Confounded with  
Complexity 

• Likely Partial 
• Only Complex 

Complete Cases 
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Strategy 2 (Month byMonth Imputation): 
– Step1: Model expected utilization for each gestational month

including month of expected care initiation 
– Step 2: Use model to impute missing values from unobserved months 
NOTE: Allows us to use data from Jan-Jul. Aug-Dec becomes less 
reliable. 
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Imputing the Missing Months 

• The full cases 
are used to 
develop a 
month-to-month 
model of 
maternity costs. 

• The model is 
used to impute 
unobserved 
months of data. 



 

Item  Total Spent N 
   Average Costs Per 

Delivery 

Preterm (<20  Wks) $41,251 4 $10,312 

 Preterm (20-36 Wks) $3,256,007 530 $6,143 $6,757 

  Term (37+ Wks) $16,822,345 4575 $3,677 $3,309 

Total $20,119,603 5109 $3,938 $3,741 

   
Item 

Preterm (<20  Wks) 

 Total Spent 

$41,251 

N 

4 

   Average Costs Per 
Delivery 

$10,312 

 Standard 
Deviation 

$15,469 

 Preterm (20-36 Wks) $4,884,010 795 $6,143 $5,529 

  Term (37+ Wks) $37,009,159 10065 $3,677 $2,206 

Total $41,934,420 10864 $3,859 $2,894 
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Results – Imputation of Missing Months 

Complete Case Analysis 

Month byMonth Imputation 

Standard  
Deviation 

$15,469 
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In our Study… 
• Family History, PHQ-9, and smoking 

status have missing values. 
•If patients do not know Family History, 

•Missing  Completely  At  Random 
•If men are less likely to complete a PHQ-9 

•Missing  At  Random 
• If Smokers tend not to share smoking status 

•Missing  Not  at  Random 
• Missingness mechanism(s) are ignorable 
• Model  the  missingness mechanism(s)  

• Selection  and/or  Pattern  Mixture  models  
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Illustration: MAR and ED Utilization 
• Task: Estimate the relationship between BH 
integration and ED use among Substance 
Abuse/Mental Health patients 
– Inclusion Criteria:Medicaid enrollees with 10 or 
more months of semi-continuous enrollment 

– Missing Data Issue: ED utilization follows known 
cyclical patterns by month. 

WhyMAR? 
• ED visits in unobserved 

months are predictable by  
when they are missing 
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Illustration: MAR and ED Episodes 
• Strategy 1 (K-Means/Nearest Neighbors): 
– Neighborhood 1: Populate missing months with that  
person’s average from observed months (Common  
Approach) 
• Issue: Ignores month to month seasonality 

– Neighborhood 2: Populate missing months with  
average from  age, gender matched peers 
• Issue: Lowers variation in outcome (false positives) 

• Strategy 2 (Multiple Imputation with Month
Covariate/Fixed Effect): 
– Directly implementable  with SAS PROC MI, LCMD (R), etc. 

• NOTE: MICE (R) would work but it assumes normality 



   
    

Results – K-Means vs. Imputed 
Strategy 1: K-Means ED Visits 
Item 

Behavioral  
 Health Centrality 

2011 Predicted 
Mean 

2012 Predicted 
Mean 

2013 Predicted 
Mean 

Visits Jan-Mar 13.5 13.9 14.1 

Visits Apr-Jun 13.9 14.0 14.1 
Visits July-Sept 14.1 14.2 14.2 
Visits Oct-Nov 13.7 13.9 14.0 

      Strategy 2: Imputed (seasonally adjusted) ED Visits 
Item 

 Behavioral Health  
Centrality 

2011 Predicted 
Mean 

2012 Predicted 
Mean 

2013 Predicted 
Mean 

Visits Jan-Mar 13.2 13.4 13.4 

Visits Apr-Jun 14.1 14.3 14.8 

Visits July-Sept 14.3 14.5 15 

Visits Oct-Nov 13.5 13.9 13.8 
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Strategy 1 vs 2: The nearest neighbors approach reduces the impact of seasonal 
patterns 
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In our Study… (continued) 

• Family  History,  PHQ-9,  and smoking 
status have missing values. 
•If patients do not know Family History, 

•Missing  Completely  At  Random 
•If men are less likely to complete a PHQ-9 

•Missing  At  Random 
• If Smokers tend not to share smoking status 

•Missing  Not  at  Random 
• Missingness mechanism(s)  are  ignorable 
• Model  the  missingness mechanism(s)  

• Selection  and/or  Pattern  Mixture  models  
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Illustration: MNAR and Maternal Episode 

• Task: Estimate total amount spent on delivery
by gestational age 
– Missing Data Issue: Emergency transport costs is
tracked in a different system and not available for
Fee For Service (FFS) 

• Why are the data MNAR? 
– The amount/type of data collected is associated
with payer type 

– Rubin: The pattern of missing data dependent
upon the pattern of missingness 



   
       

Billed Amounts (Maternal Episodes) 
Fee For Service (No emergency transport costs) 

Item  Total Spent N 
   Average Costs Per 

Delivery 
  Preterm (<20 Wks) $17,715 2 $8,858 
 Preterm (20-36 Wks) $2,477,969 534 $4,640 

  Term (37+ Wks) $15,135,319 4,574 $3,309 
Total $17,639,173 5,109 $3,938 

  Managed Care Population 

Item  Total Spent N 
   Average Costs Per 

Delivery 
  Preterm (<20 Wks) $1,965 1 $1,965 
 Preterm (20-36 Wks) $22,770,592 1,179 $19,313 

  Term (37+ Wks) $111,838,127 11,020 $4,688 
Total $41,934,420 10,864 $3,859 
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A comparison of Fee-for Service and Managed Care Organization episode costs:
• Similar overall average episode costs 
• Contracted MCOs appear to managed complex cases poorly 
• A Heckman adjustment or pattern-mixture model is needed 
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Summary of Intro to Missing Data 
• Why do we care about Missing Data? 

• Impact analytic precision (MCAR) 
• Effect analysis and interpretation (MAR) 
• Introduce potential bias (MNAR) 

• How does it appear in datasets? 

• What can be done about it? 
• Ignore/Complete Case: MCAR 
• Impute 
• Model Directly 



   
  

 

Filling in the 
Gaps in 
Maternity Data 
Chris McInnish, Director of 
Quality Analytics, and  
Drew Nelson, MPH, Director of 
Quality Assurance Division 
Alabama Medicaid 
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Problem 

• Deliveries identified from claims data and vital 
statistics 
• Not all deliveries have vital stats match 
• Out of state 
• Name differences 
• Source of payment issues 

• Claims data inconsistent for quality indicators 

30 



 

           

Alabama Approach 

Multiple Sources of Semi-Truth. Looking for at least two to agree. 

• Build a hierarchy of data sources for maternity  
indicators 
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Identify Deliveries 

• Claims 
• Maternity case management providers 
• Hospitals 
• Physician 

• Deduplication 
• Validate 
• Determine where possible mother/baby match 

32 



  
   
  

Validation 

1. Vital Stats Match 
2. Out of State Deliveries 
3. Two Independent Sources 
4. Exclude for multiple deliveries in 6 months 
5. Exclude for age <9 and >60 
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Delivery Date 

• Vital Stats 
• CaseManagement Claim 
• Physician Claim 
• Hospital Date of Admission 
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Gestational Age 

• Sources of truth in order 
• Vital Stats 
• Claims from hospital/physician 
• CaseManagement System 
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Number of Prenatal Visits 

• Maximum number from any source 
• Vital Stats 
• Claims from physician 
• CaseManagement System 
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Birth Weight 

• Sources of truth in order (with reasonableness bounds) 
• Vital Stats 
• Claims from Physician / Hospital 
• CaseManagement System 
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Post-Partum 

• Sources of Truth in Order 
• Claims from physician 
• CaseManagement System 
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Newborn Information 

• Medicaid covers many newborns where the 
pregnancy and delivery were not paid for by
Medicaid 
• Claims for deliveries do not include infants ID 
• Vital Stats and eligibility information used to match 
• Vital stats data received for all infants with 
eligibility and all deliveries 

39 



Product 

• Maternity file with all deliveries  
• One line per baby delivered 

• Infant File  
• One line per infant with eligibility within first 3 months 
of life 

40 



Examples 
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   Medicaid Births by Year 



 Prenatal Care 
     Number of Prenatal Visits (2016) 
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Prenatal and Post Partum Care 

U.S. Department of Health and
Human Services recommends 
the first prenatal visit at 8 weeks 

Post Partum Visit Rates (2016 

2 



   

Eligibility 
Mother’s Eligibility Status (2016) 



 Delivery Costs 



 Infant Costs 
Medicaid NICU Information  
(2016) 
• 16% Requires NICU 
• 19 Days Average NICU Stay 
• $2069 Average Cost/Day 



   Infants – Neonatal Abstinence 
Syndrome 
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Questions? 
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Takeaways 

• Ignoring (deleting) missing data may lead to 
incorrect conclusions 

• Strategy to address missing data is determined 
by its pattern and structure 

• Minimizing the presence of missing data is the 
best solution, but there are also analytical 
approaches that we will highlight in our next 
webinar which will be in September 2018 
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Thank You 

Thank you for joining today’s webinar! 

Please take a moment to complete 
the post-webinar survey. 

We appreciate your feedback! 

For more information & resources, please 
contact MedicaidIAP@cms.hhs.go 

mailto:MedicaidIAP@cms.hhs.gov
mailto:MedicaidIAP@cms.hhs.gov
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